摘要翻译:
人工智能(AI)在越来越多的任务中取得了超人的性能,但理解和解释AI仍然具有挑战性。本文通过对三个著名博弈AIs的案例分析,阐明了开发AIs的机器学习算法与动态结构模型计量经济学之间的联系。象棋游戏深蓝是一个校准的价值函数,而Shogi-play Bonanza是一个通过Rust(1987)嵌套定点方法估计的价值函数。AlphaGo的“监督-学习策略网络”是Hotz和Miller(1993)条件选择概率估计的深度
神经网络实现;它的“强化-学习价值网络”相当于Hotz、Miller、Sanders和Smith(1994)的条件选择模拟方法。放宽这些认可机构隐含的计量经济学假设,可改善其结构上的可解释性。
---
英文标题:
《Artificial Intelligence as Structural Estimation: Economic
Interpretations of Deep Blue, Bonanza, and AlphaGo》
---
作者:
Mitsuru Igami
---
最新提交年份:
2018
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
Artificial intelligence (AI) has achieved superhuman performance in a growing number of tasks, but understanding and explaining AI remain challenging. This paper clarifies the connections between machine-learning algorithms to develop AIs and the econometrics of dynamic structural models through the case studies of three famous game AIs. Chess-playing Deep Blue is a calibrated value function, whereas shogi-playing Bonanza is an estimated value function via Rust's (1987) nested fixed-point method. AlphaGo's "supervised-learning policy network" is a deep neural network implementation of Hotz and Miller's (1993) conditional choice probability estimation; its "reinforcement-learning value network" is equivalent to Hotz, Miller, Sanders, and Smith's (1994) conditional choice simulation method. Relaxing these AIs' implicit econometric assumptions would improve their structural interpretability.
---
PDF链接:
https://arxiv.org/pdf/1710.10967