全部版块 我的主页
论坛 经济学人 二区 外文文献专区
248 0
2022-03-05
摘要翻译:
本文研究了一类具有一维未知量测部分的$n$维非线性正系统的全局输出反馈镇定问题。我们首先提出了我们的主要结果,一个输出反馈控制过程,利用不确定部分的测量,能够全局稳定系统到一个可调节的平衡点在正的直方体内部。尽管这一结果相当普遍,但它是基于在实践中可能难以验证的假设。然后在第二步中,通过一个关于一类正系统的定理,将强正等项的存在性与其全局渐近稳定性联系起来,我们给出了其他假设,使我们的主要结果成立。这些新的假设更具限制性,但更容易检查。一些说明性的例子,突出了所考虑系统的潜在复杂开环动力学(多稳定性、极限环、混沌)和控制过程的兴趣,总结了本报告。
---
英文标题:
《Global Stabilization of a Class of Partially Known Positive Systems》
---
作者:
Jean-Luc Gouz\'e (INRIA Sophia Antipolis), Olivier Bernard (INRIA
  Sophia Antipolis), Ludovic Mailleret (URIH)
---
最新提交年份:
2006
---
分类信息:

一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Biology        数量生物学
二级分类:Other Quantitative Biology        其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--

---
英文摘要:
  In this report we deal with the problem of global output feedback stabilization of a class of $n$-dimensional nonlinear positive systems possessing a one-dimensional unknown, though measured, part. We first propose our main result, an output feedback control procedure, taking advantage of measurements of the uncertain part, able to globally stabilize the system towards an adjustable equilibrium point in the interior of the positive orthant. Though quite general, this result is based on hypotheses that might be difficult to check in practice. Then in a second step, through a Theorem on a class of positive systems linking the existence of a strongly positive equillibrium to its global asymptotic stability, we propose other hypotheses for our main result to hold. These new hypotheses are more restrictive but much simpler to check. Some illustrative examples, highlighting both the potential complex open loop dynamics (multi-stability, limit cycle, chaos) of the considered systems and the interest of the control procedure, conclude this report.
---
PDF链接:
https://arxiv.org/pdf/math/0607466
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群