摘要翻译:
考虑实二元多项式f和g,分别具有3和m个单项式项。我们证明了对于所有m>=3,在正象限上存在形式为(f,g)的系统,其根正好为2m-1。即使是M=4有7个正根的例子,在本文之前也是未知的,所以我们详细描述了这种形式的一个明确的例子。给出了具有n+4项的n-变量多项式实零集的差伦型个数的一个O(n^{11})上界。
---
英文标题:
《New Complexity Bounds for Certain Real Fewnomial Zero Sets》
---
作者:
Joel Gomez, Andrew Niles, and J. Maurice Rojas
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Computer Science 计算机科学
二级分类:Computational Geometry 计算几何
分类描述:Roughly includes material in ACM Subject Classes I.3.5 and F.2.2.
大致包括ACM课程I.3.5和F.2.2中的材料。
--
---
英文摘要:
Consider real bivariate polynomials f and g, respectively having 3 and m monomial terms. We prove that for all m>=3, there are systems of the form (f,g) having exactly 2m-1 roots in the positive quadrant. Even examples with m=4 having 7 positive roots were unknown before this paper, so we detail an explicit example of this form. We also present an O(n^{11}) upper bound for the number of diffeotopy types of the real zero set of an n-variate polynomial with n+4 monomial terms.
---
PDF链接:
https://arxiv.org/pdf/0709.2405