摘要翻译:
在许多回声消除系统中,控制逻辑在估计回声路径的同时优化自适应滤波器的性能方面具有核心作用。为了可靠的控制,回声消除器通常包括精确的双话(DT)和信道变化(CC)检测器。这项工作扩展了通常的检测策略,定义了一个描述回声消除器操作的四种可能状态的分类问题。新的公式允许使用决策理论来连续控制不同操作模式之间的过渡。该分类规则简化为一个低代价的统计量,对于该统计量,可以确定在所有假设下的错误概率,从而允许分析地访问分类性能。利用合成数据和实际数据进行蒙特卡罗模拟,验证了该方法的可靠性。
---
英文标题:
《Technical Report: A New Decision-Theory-Based Framework for Echo
Canceler Control》
---
作者:
Tales Imbiriba, Jos\'e Carlos M. Bermudez, Jean-Yves Tourneret, and
Neil J. Bershad
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
---
英文摘要:
A control logic has a central role in many echo cancellation systems for optimizing the performance of adaptive filters while estimating the echo path. For reliable control, accurate double-talk (DT) and channel change (CC) detectors are usually incorporated to the echo canceler. This work expands the usual detection strategy to define a classification problem characterizing four possible states of the echo canceler operation. The new formulation allow the use of decision theory to continuously control the transitions among the different modes of operation. The classification rule reduces to a low cost statistics for which it is possible to determine the probability of error under all hypotheses, allowing the classification performance to be accessed analytically. Monte Carlo simulations using synthetic and real data illustrate the reliability of the proposed method.
---
PDF链接:
https://arxiv.org/pdf/1711.11454