摘要翻译:
研究了在回答集语义下(非单调)逻辑规划中的信念变化问题。与以往逻辑程序设计中的信念改变方法不同,我们的形式化技术类似于命题逻辑中基于距离的信念修正方法。在发展我们的结果时,我们建立在由SE模型提供的逻辑程序模型理论的基础上。由于SE模型提供了逻辑程序的一种形式的、单调的特征,我们可以在逻辑程序中从信念修正领域适应信念改变的技术。我们分别介绍了修改和合并逻辑程序的方法。对于前者,我们研究了基于子集的修正和基于基数的修正,并证明它们满足大多数AGM修正假设。对于合并,我们分别考虑仲裁合并和IC合并后的算子。我们还提出了计算修正的编码,以及在同一逻辑编程框架内逻辑程序的合并,从而直接实现了我们的方法,即现成的答案集求解器。这些编码反过来反映了这样一个事实,即我们的变更操作符并没有增加基本形式主义的复杂性。
---
英文标题:
《A general approach to belief change in answer set programming》
---
作者:
James Delgrande, Torsten Schaub, Hans Tompits and Stefan Woltran
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
We address the problem of belief change in (nonmonotonic) logic programming under answer set semantics. Unlike previous approaches to belief change in logic programming, our formal techniques are analogous to those of distance-based belief revision in propositional logic. In developing our results, we build upon the model theory of logic programs furnished by SE models. Since SE models provide a formal, monotonic characterisation of logic programs, we can adapt techniques from the area of belief revision to belief change in logic programs. We introduce methods for revising and merging logic programs, respectively. For the former, we study both subset-based revision as well as cardinality-based revision, and we show that they satisfy the majority of the AGM postulates for revision. For merging, we consider operators following arbitration merging and IC merging, respectively. We also present encodings for computing the revision as well as the merging of logic programs within the same logic programming framework, giving rise to a direct implementation of our approach in terms of off-the-shelf answer set solvers. These encodings reflect in turn the fact that our change operators do not increase the complexity of the base formalism.
---
PDF链接:
https://arxiv.org/pdf/0912.5511