摘要翻译:
我们研究了通过化学突触耦合的Morris-Lecar神经元阵列在噪声存在下的行为。特别注意将这种行为与通过间隙连接产生的电耦合的更广为人知的情况进行比较。特别是,我们的数值模拟表明,在最佳噪声(即阵列增强相干共振)下,化学突触比间隙连接更有效地增强相干性:在(非线性)化学耦合的情况下,与(线性)电耦合相比,我们观察到系统的随机相干性显著增加。我们将这两种类型的耦合之间的定性差异解释为,化学突触只在突触前神经元尖峰时起作用,而缝隙连接则一直连接着两个神经元的电压。这导致在电耦合情况下,在串行时间间隔内出现更大的关联,这不利于阵列增强相干效应。最后,我们报告了在这个局域耦合系统中存在一个系统尺寸的相干共振,由阵列的平均膜电位显示。
---
英文标题:
《On the role of chemical synapses in coupled neurons with noise》
---
作者:
Pablo Balenzuela Jordi Garcia-Ojalvo
---
最新提交年份:
2005
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Neurons and Cognition 神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,
神经网络,感觉运动控制,行为,注意
--
一级分类:Physics 物理学
二级分类:Other Condensed Matter 其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
We examine the behavior in the presence of noise of an array of Morris-Lecar neurons coupled via chemical synapses. Special attention is devoted to comparing this behavior with the better known case of electrical coupling arising via gap junctions. In particular, our numerical simulations show that chemical synapses are more efficient than gap junctions in enhancing coherence at an optimal noise (what is known as array-enhanced coherence resonance): in the case of (nonlinear) chemical coupling, we observe a substantial increase in the stochastic coherence of the system, in comparison with (linear) electrical coupling. We interpret this qualitative difference between both types of coupling as arising from the fact that chemical synapses only act while the presynaptic neuron is spiking, whereas gap junctions connect the voltage of the two neurons at all times. This leads in the electrical coupling case to larger correlations during interspike time intervals which are detrimental to the array-enhanced coherence effect. Finally, we report on the existence of a system-size coherence resonance in this locally coupled system, exhibited by the average membrane potential of the array.
---
PDF链接:
https://arxiv.org/pdf/q-bio/0502025