全部版块 我的主页
论坛 经济学人 二区 外文文献专区
468 0
2022-03-05
摘要翻译:
分布式状态估计强烈依赖于协同信号处理,这往往需要在资源受限的传感器节点上执行过多的通信和计算。为了解决这个问题,我们提出了一个事件触发扩散卡尔曼滤波器,它收集测量值,并根据指示估计误差的局部信号在节点之间交换消息。在此基础上,我们提出了一种能量感知的状态估计算法,该算法能够调节无线网络中的资源消耗,保证每一个消耗的资源的有效性。该算法不要求节点共享其局部协方差矩阵,从而允许大大减少传输消息的数量。为了验证该算法的有效性,我们将该算法应用于分布式同时定位和时间同步问题,并在移动四转子节点和固定定制超宽带无线设备的物理实验平台上进行了评估。实验结果表明,该算法在降低性能16%的同时,节省了86%的通信开销。我们将Matlab代码和实际测试数据联机提供。
---
英文标题:
《Event-Triggered Diffusion Kalman Filters》
---
作者:
Amr Alanwar, Hazem Said, Ankur Mehta, Matthias Althoff
---
最新提交年份:
2020
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Computer Science        计算机科学
二级分类:Robotics        机器人学
分类描述:Roughly includes material in ACM Subject Class I.2.9.
大致包括ACM科目I.2.9类的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Distributed state estimation strongly depends on collaborative signal processing, which often requires excessive communication and computation to be executed on resource-constrained sensor nodes. To address this problem, we propose an event-triggered diffusion Kalman filter, which collects measurements and exchanges messages between nodes based on a local signal indicating the estimation error. On this basis, we develop an energy-aware state estimation algorithm that regulates the resource consumption in wireless networks and ensures the effectiveness of every consumed resource. The proposed algorithm does not require the nodes to share its local covariance matrices, and thereby allows considerably reducing the number of transmission messages. To confirm its efficiency, we apply the proposed algorithm to the distributed simultaneous localization and time synchronization problem and evaluate it on a physical testbed of a mobile quadrotor node and stationary custom ultra-wideband wireless devices. The obtained experimental results indicate that the proposed algorithm allows saving 86% of the communication overhead associated with the original diffusion Kalman filter while causing deterioration of performance by 16% only. We make the Matlab code and the real testing data available online.
---
PDF链接:
https://arxiv.org/pdf/1711.00493
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群