全部版块 我的主页
论坛 经济学人 二区 外文文献专区
516 0
2022-04-03
摘要翻译:
提出了一种基于调制域Kalman滤波的单声道语音增强算法,对语音和混响的时频对数幅值谱进行盲跟踪。提出了一种自适应算法,在考虑帧间语音动态特性的基础上,通过给定带噪混响语音的对数幅度谱估计语音对数幅度谱的后验分布,进行盲联合去噪和去混响。Kalman滤波更新步长模拟了语音、噪声和混响对数谱之间的非线性关系。Kalman滤波算法采用一种考虑混响时间和直接-混响能量比(DRR)的混响参数的信号模型,并在每个频域内估计和跟踪T60和DRR,以改进对数幅度谱的估计。测试了Kalman滤波算法,并检查了描述估计混响特征随时间变化的图形。在不同噪声类型下,从语音质量、语音清晰度和去混响性能等方面对所提算法进行了评估,并与竞争的去噪和去混响技术进行了比较。利用含噪混响语音的实验结果证明了该增强算法的有效性。
---
英文标题:
《Modulation-Domain Kalman Filtering for Monaural Blind Speech Denoising
  and Dereverberation》
---
作者:
Nikolaos Dionelis, Mike Brookes
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  We describe a monaural speech enhancement algorithm based on modulation-domain Kalman filtering to blindly track the time-frequency log-magnitude spectra of speech and reverberation. We propose an adaptive algorithm that performs blind joint denoising and dereverberation, while accounting for the inter-frame speech dynamics, by estimating the posterior distribution of the speech log-magnitude spectrum given the log-magnitude spectrum of the noisy reverberant speech. The Kalman filter update step models the non-linear relations between the speech, noise and reverberation log-spectra. The Kalman filtering algorithm uses a signal model that takes into account the reverberation parameters of the reverberation time, $T_{60}$, and the direct-to-reverberant energy ratio (DRR) and also estimates and tracks the $T_{60}$ and the DRR in every frequency bin in order to improve the estimation of the speech log-magnitude spectrum. The Kalman filtering algorithm is tested and graphs that depict the estimated reverberation features over time are examined. The proposed algorithm is evaluated in terms of speech quality, speech intelligibility and dereverberation performance for a range of reverberation parameters and SNRs, in different noise types, and is also compared to competing denoising and dereverberation techniques. Experimental results using noisy reverberant speech demonstrate the effectiveness of the enhancement algorithm.
---
PDF链接:
https://arxiv.org/pdf/1807.10236
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群