全部版块 我的主页
论坛 经济学人 二区 外文文献专区
426 0
2022-03-08
摘要翻译:
卡尔曼滤波是一种经典的状态估计技术,广泛应用于信号处理和车辆自主控制等领域。它现在被用来解决计算机系统中的问题,如控制处理器的电压和频率。尽管Kalman滤波在文献中有许多介绍,但它们通常处理特定的系统,如自治机器人或具有高斯噪声的线性系统,这使得理解Kalman滤波背后的一般原理变得困难。本文首先在具有概率论和微积分基础知识的人都能达到的水平上提出Kalman滤波背后的抽象思想,然后说明如何将这些概念应用于线性系统的状态估计这一特殊问题。概念与应用的这种分离应该使理解卡尔曼滤波和将其应用于计算机系统中的其他问题变得更加容易。
---
英文标题:
《An Elementary Introduction to Kalman Filtering》
---
作者:
Yan Pei, Swarnendu Biswas, Donald S. Fussell, Keshav Pingali
---
最新提交年份:
2019
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Systems and Control        系统与控制
分类描述:This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--

---
英文摘要:
  Kalman filtering is a classic state estimation technique used in application areas such as signal processing and autonomous control of vehicles. It is now being used to solve problems in computer systems such as controlling the voltage and frequency of processors.   Although there are many presentations of Kalman filtering in the literature, they usually deal with particular systems like autonomous robots or linear systems with Gaussian noise, which makes it difficult to understand the general principles behind Kalman filtering. In this paper, we first present the abstract ideas behind Kalman filtering at a level accessible to anyone with a basic knowledge of probability theory and calculus, and then show how these concepts can be applied to the particular problem of state estimation in linear systems. This separation of concepts from applications should make it easier to understand Kalman filtering and to apply it to other problems in computer systems.
---
PDF链接:
https://arxiv.org/pdf/1710.04055
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群