摘要翻译:
研究了非均匀无线传感器网络中的二元假设检验问题,其中融合中心(FC)对底层假设做出全局决策。我们假设传感器的观测是相关的高斯,传感器在决策时没有意识到这种相关性。传感器在衰落信道上发送其调制判决,受制于个别和/或总的发射功率限制。针对并行接入信道(PAC)和多址接入信道(MAC)模型,我们推导了具有相干接收的FC处测试统计量的修正偏转系数(MDC),并提出了一种在总功率约束、单个和全部功率约束、仅单个功率约束三种不同的发射功率约束下,使测试统计量的MDC最大的发射功率分配方案。当我们的约束优化问题的解析解难以确定时,我们讨论了如何将这些问题转化为凸问题。研究了传感器观测之间的相关性、局部决策的可靠性、通信信道模型和信道质量以及发射功率约束对非均匀传感器全局决策可靠性和功率分配的影响。
---
英文标题:
《On Power Allocation for Distributed Detection with Correlated
Observations and Linear Fusion》
---
作者:
Hamid R. Ahmadi, Nahal Maleki and Azadeh Vosoughi
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
We consider a binary hypothesis testing problem in an inhomogeneous wireless sensor network, where a fusion center (FC) makes a global decision on the underlying hypothesis. We assume sensors observations are correlated Gaussian and sensors are unaware of this correlation when making decisions. Sensors send their modulated decisions over fading channels, subject to individual and/or total transmit power constraints. For parallel-access channel (PAC) and multiple-access channel (MAC) models, we derive modified deflection coefficient (MDC) of the test statistic at the FC with coherent reception.We propose a transmit power allocation scheme, which maximizes MDC of the test statistic, under three different sets of transmit power constraints: total power constraint, individual and total power constraints, individual power constraints only. When analytical solutions to our constrained optimization problems are elusive, we discuss how these problems can be converted to convex ones. We study how correlation among sensors observations, reliability of local decisions, communication channel model and channel qualities and transmit power constraints affect the reliability of the global decision and power allocation of inhomogeneous sensors.
---
PDF链接:
https://arxiv.org/pdf/1710.0954