摘要翻译:
我们考虑约化群在有限生成Cox环的变体上的作用,例如对角作用在射影空间乘积上的经典情形。给定这样一个作用,我们通过Cox环中的组合数据构造所有极大开子集,使得商是拟射影的或可嵌入到一个toric簇中的。作为应用,我们得到了线性化充分锥腔结构的显式描述,以及还原群商与环面作用商之间的几个Gelfand-MacPherson型对应关系。此外,我们的方法提供了许多商空间的几何信息。
---
英文标题:
《Geometric Invariant Theory via Cox Rings》
---
作者:
Ivan V. Arzhantsev, Juergen Hausen
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We consider actions of reductive groups on a varieties with finitely generated Cox ring, e.g., the classical case of a diagonal action on a product of projective spaces. Given such an action, we construct via combinatorial data in the Cox ring all maximal open subsets such that the quotient is quasiprojective or embeddable into a toric variety. As applications, we obtain an explicit description of the chamber structure of the linearized ample cone and several Gelfand-MacPherson type correspondences relating quotients of reductive groups to quotients of torus actions. Moreover, our approach provides information on the geometry of many of the resulting quotient spaces.
---
PDF链接:
https://arxiv.org/pdf/0706.4353