摘要翻译:
我们证明了在反协调丛为nef的光滑三重上或在小协指数的Fano变种上,某些丰满因子的Seshadri常数大于1。主要的工具是(一些已知的)Kawamata有效非消失猜想和附加理论。利用Kawamata的次附加公式,证明了“高”体积的线束在维3上的非消失猜想。
---
英文标题:
《Non-annulation effective et positivit\'e locale des fibr\'es en droites
amples adjoints》
---
作者:
Ama\"el Broustet
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that Seshadri constants of some ample divisors are bigger than 1 on smooth threefolds whose anticanonical bundle is nef or on Fano varieties of small coindice. The main tools are (some known cases of) the Kawamata's effective non-vanishing conjecture and the adjunction theory. We prove the non-vanishing conjecture in dimension 3 in the case of line bundles of "high" volume using Kawamata's subadjunction formula.
---
PDF链接:
https://arxiv.org/pdf/0707.4140