摘要翻译:
设g是复半单李代数,g′是Langlands对偶群。给出了G′-环Grassmanian上任意球面Schubert簇的上同调代数为形式为Sym(G^e)/j的商的描述。这里,J是G^E的对称代数中的一个适当理想,G^E是G中主幂零的中心器。我们还讨论了Kostant关于G上多项式代数结构的著名结果的拓扑证明。
---
英文标题:
《Variations on themes of Kostant》
---
作者:
Victor Ginzburg
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let g be a complex semisimple Lie algebra and let G' be the Langlands dual group. We give a description of the cohomology algebra of an arbitrary spherical Schubert variety in the loop Grassmannian for G' as a quotient of the form Sym(g^e)/J. Here, J is an appropriate ideal in the symmetric algebra of g^e, the centralizer of a principal nilpotent in g. We also discuss a `topological' proof of Kostant's famous result on the structure of the polynomial algebra on g.
---
PDF链接:
https://arxiv.org/pdf/0710.1443