全部版块 我的主页
论坛 经济学人 二区 外文文献专区
427 0
2022-03-06
摘要翻译:
图形模型已经成为表示大量变量中的依赖关系的非常流行的工具,并且是表示因果结构的关键。我们给出了在高维图形模型上目标参数D$可能远大于样本量的一致推理的结果。当恢复因果模型的某些特征或结构时,这一点尤其重要。我们的结果强调了如何在高维环境下利用现代机器学习方法在复杂数据集中估计和恢复图形模型。为了在多个目标参数上同时构造置信域,对干扰函数进行足够快的估计是至关重要的。在此背景下,我们在近似稀疏性条件下建立了随机设计中平方根估计量的一致估计率和稀疏性保证,这可能对高维相关问题具有独立的意义。我们还在一个全面的模拟研究中证明了我们的程序具有良好的小样本性质。
---
英文标题:
《Uniform Inference in High-Dimensional Gaussian Graphical Models》
---
作者:
Sven Klaassen, Jannis K\"uck, Martin Spindler, Victor Chernozhukov
---
最新提交年份:
2018
---
分类信息:

一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  Graphical models have become a very popular tool for representing dependencies within a large set of variables and are key for representing causal structures. We provide results for uniform inference on high-dimensional graphical models with the number of target parameters $d$ being possible much larger than sample size. This is in particular important when certain features or structures of a causal model should be recovered. Our results highlight how in high-dimensional settings graphical models can be estimated and recovered with modern machine learning methods in complex data sets. To construct simultaneous confidence regions on many target parameters, sufficiently fast estimation rates of the nuisance functions are crucial. In this context, we establish uniform estimation rates and sparsity guarantees of the square-root estimator in a random design under approximate sparsity conditions that might be of independent interest for related problems in high-dimensions. We also demonstrate in a comprehensive simulation study that our procedure has good small sample properties.
---
PDF链接:
https://arxiv.org/pdf/1808.10532
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群