摘要翻译:
Luhmann(1984)将社会定义为一个在结构上与人类行为系统相耦合的交流系统,但不是人类行为系统的集合。通信系统被认为是自组织的(“自生成的”),人类行为者也是如此。通信系统可以用Shannon(1948)的通信数学理论来研究。通过局部节点之一的动作来更新网络是
人工智能中的一个众所周知的问题(Pearl,1988)。将这些理论结合起来,可以推导出概率结构/动作偶然性的通用算法。在数学和理论上讨论了这种偶然性对每个系统的后果,它对它们进一步历史的后果,以及通过平衡机制对每一方的稳定。最后给出了一个实证实例。
---
英文标题:
《The Production of Probabilistic Entropy in Structure/Action Contingency
Relations》
---
作者:
Loet Leydesdorff
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
Luhmann (1984) defined society as a communication system which is structurally coupled to, but not an aggregate of, human action systems. The communication system is then considered as self-organizing ("autopoietic"), as are human actors. Communication systems can be studied by using Shannon's (1948) mathematical theory of communication. The update of a network by action at one of the local nodes is then a well-known problem in artificial intelligence (Pearl 1988). By combining these various theories, a general algorithm for probabilistic structure/action contingency can be derived. The consequences of this contingency for each system, its consequences for their further histories, and the stabilization on each side by counterbalancing mechanisms are discussed, in both mathematical and theoretical terms. An empirical example is elaborated.
---
PDF链接:
https://arxiv.org/pdf/1005.0707