摘要翻译:
设k是正特征P的代数闭域。我们考虑了哪些有限群G具有G在k上连通光滑射影曲线上的每一忠实作用都提升到特征零点的性质。奥尔特猜想循环群具有这种性质。我们证明了如果一个由p循环的群G具有这个性质,那么除了特征2中的A_4外,G一定是循环的或二面体的。这证明了奥尔特猜想强形式的一个方向。
---
英文标题:
《Oort groups and lifting problems》
---
作者:
Ted Chinburg, Robert Guralnick and David Harbater
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
---
英文摘要:
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A_4 in characteristic 2. This proves one direction of a strong form of the Oort Conjecture.
---
PDF链接:
https://arxiv.org/pdf/0709.0284