摘要翻译:
摘要通过一组装有全向接收信号强度(RSS)传感器的无人飞行器,研究了具有间歇传输的射频(RF)发射机的定位问题。这个小组开始了一个自主巡逻,以指定的准确性,尽可能快地定位和跟踪目标。这一挑战可以分解为两个阶段:1)给定先前测量的目标位置估计(定位);2)给定当前估计(路径规划),规划跟踪无人机的未来轨迹以获得较低的期望定位误差。对于每一阶段,我们从性能和计算负载两个方面比较了两种算法。在定位阶段,我们比较了基于检测的扩展卡尔曼滤波(EKF)和递归贝叶斯估计器。在路径规划阶段,我们比较了最速下降后Cramer-Rao下界(CRLB)路径规划和一种仿生启发式路径规划。我们的结果表明,最速下降路径规划比仿生路径规划的性能好一个数量级,而递归贝叶斯估计器仅比基于检测的EKF的性能好一个数量级。
---
英文标题:
《Autonomous Tracking of Intermittent RF Source Using a UAV Swarm》
---
作者:
Farshad Koohifar, Ismail Guvenc, and Mihail L. Sichitiu
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Multiagent Systems 多智能体系统
分类描述:Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
涵盖多Agent系统、分布式
人工智能、智能Agent、协调交互。和实际应用。大致涵盖ACM科目I.2.11类。
--
一级分类:Computer Science 计算机科学
二级分类:Systems and Control 系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--
---
英文摘要:
Localization of a radio frequency (RF) transmitter with intermittent transmissions is considered via a group of unmanned aerial vehicles (UAVs) equipped with omnidirectional received signal strength (RSS) sensors. This group embarks on an autonomous patrol to localize and track the target with a specified accuracy, as quickly as possible. The challenge can be decomposed into two stages: 1) estimation of the target position given previous measurements (localization), and 2) planning the future trajectory of the tracking UAVs to get lower expected localization error given current estimation (path planning). For each stage we compare two algorithms in terms of performance and computational load. For the localization stage, we compare a detection based extended Kalman filter (EKF) and a recursive Bayesian estimator. For the path planning stage, we compare steepest descent posterior Cramer-Rao lower bound (CRLB) path planning and a bio-inspired heuristic path planning. Our results show that the steepest descent path planning outperforms the bio-inspired path planning by an order of magnitude, and recursive Bayesian estimator narrowly outperforms detection based EKF.
---
PDF链接:
https://arxiv.org/pdf/1801.02478