摘要翻译:
我们将生成对抗网络(GAN)与光学显微镜相结合,实现了大视场(FOV)下的深度学习超分辨率。通过在对抗性训练中适当地采用先前的显微数据,神经网络可以从其单一的低分辨率测量中恢复出高分辨率、准确的新样本图像。它的能力已经被广泛地应用于各种类型的样品成像,如美国空军分辨靶、人类病理切片、荧光标记的成纤维细胞和转基因小鼠大脑深部组织,无论是宽视野显微镜还是光片显微镜。这些样本的千兆像素、多色重建验证了一个成功的基于GaN的单幅图像超分辨率过程。我们还提出了一个图像退化模型来生成用于训练的低分辨率图像,使我们的方法摆脱了训练数据集准备过程中复杂的图像配准。经过良好训练的网络建立后,这种基于
深度学习的成像方法能够以高速(1秒内)恢复大视场(~95mm2)、高分辨率(~1.7μm)的图像,而不需要对现有显微镜的设置进行任何改变。
---
英文标题:
《High-throughput, high-resolution registration-free generated adversarial
  network microscopy》
---
作者:
Hao Zhang (1), Xinlin Xie (1), Chunyu Fang (1), Yicong Yang (1), Di
  Jin (2) and Peng Fei (1 and 3) ((1) School of Optical and Electronic
  Informaiton, Huazhong University of Science and Technology, Wuhan, China, (2)
  Computer Science and Artificial Intelligence Laboratory, Massachusetts
  Institute of Technology, Cambridge, U.S.A., (3) Britton Chance Center for
  Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong
  University of Science and Technology, Wuhan, China)
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Physics        物理学
二级分类:Optics        光学
分类描述:Adaptive optics. Astronomical optics. Atmospheric optics. Biomedical optics. Cardinal points. Collimation. Doppler effect. Fiber optics. Fourier optics. Geometrical optics (Gradient index optics. Holography. Infrared optics. Integrated optics. Laser applications. Laser optical systems. Lasers. Light amplification. Light diffraction. Luminescence. Microoptics. Nano optics. Ocean optics. Optical computing. Optical devices. Optical imaging. Optical materials. Optical metrology. Optical microscopy. Optical properties. Optical signal processing. Optical testing techniques. Optical wave propagation. Paraxial optics. Photoabsorption. Photoexcitations. Physical optics. Physiological optics. Quantum optics. Segmented optics. Spectra. Statistical optics. Surface optics. Ultrafast optics. Wave optics. X-ray optics.
自适应光学。天文光学。大气光学。生物医学光学。基本点。准直。多普勒效应。纤维光学。傅里叶光学。几何光学(梯度折射率光学、全息术、红外光学、集成光学、激光应用、激光光学系统、激光、光放大、光衍射、发光、微光学、纳米光学、海洋光学、光学计算、光学器件、光学成像、光学材料、光学计量学、光学显微镜、光学特性、光学信号处理、光学测试技术、光波传播、傍轴光学、光吸收、光激发、物理光学、生理光学、量子光学、分段光学、光谱、统计光学、表面光学、超快光学、波动光学、X射线光学。
--
一级分类:Quantitative Biology        数量生物学
二级分类:Quantitative Methods        定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
一级分类:Quantitative Biology        数量生物学
二级分类:Tissues and Organs        组织器官
分类描述:Blood flow in vessels, biomechanics of bones, electrical waves, endocrine system, tumor growth
血管内血流,骨骼生物力学,电波,内分泌系统,肿瘤生长
--
---
英文摘要:
  We combine generative adversarial network (GAN) with light microscopy to achieve deep learning super-resolution under a large field of view (FOV). By appropriately adopting prior microscopy data in an adversarial training, the neural network can recover a high-resolution, accurate image of new specimen from its single low-resolution measurement. Its capacity has been broadly demonstrated via imaging various types of samples, such as USAF resolution target, human pathological slides, fluorescence-labelled fibroblast cells, and deep tissues in transgenic mouse brain, by both wide-field and light-sheet microscopes. The gigapixel, multi-color reconstruction of these samples verifies a successful GAN-based single image super-resolution procedure. We also propose an image degrading model to generate low resolution images for training, making our approach free from the complex image registration during training dataset preparation. After a welltrained network being created, this deep learning-based imaging approach is capable of recovering a large FOV (~95 mm2), high-resolution (~1.7 {\mu}m) image at high speed (within 1 second), while not necessarily introducing any changes to the setup of existing microscopes. 
---
PDF链接:
https://arxiv.org/pdf/1801.0733