摘要翻译:
通过施加机械力,可以一次一个地展开/重新折叠RNA分子。在较小的作用力范围内,一个RNA分子可以在折叠状态和展开状态之间跳跃,其动力学速率依赖于作用力。在这里,我们引入一个介观模型来分析RNA发夹在光镊装置中的跳跃动力学。该模型包括实验装置的不同元素(珠子、手柄和RNA序列)和仪器的局限性(力反馈机制的时间滞后和数据采集的有限带宽)。我们研究了仪器对测量跳跃率的影响。模型的结果与文献(1)中的实验结果一致。通过理论和实验的比较,我们可以单独推断出RNA发夹的本征分子速率值,并寻找最佳的实验条件进行测量。我们得出结论,长手柄和软激光陷阱代表了提取最接近本征分子速率的速率估计的最佳条件。本文提出的方法和原理可以应用于其他实验装置和其他分子。
---
英文标题:
《Force unfolding kinetics of RNA using optical tweezers. II. Modeling
experiments》
---
作者:
M. Manosas, J.-D. Wen, P. T. X. Li, S. B. Smith, C. Bustamante, I.
Tinoco, Jr., F. Ritort
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Biological Physics 生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Physics 物理学
二级分类:Soft Condensed Matter 软凝聚态物质
分类描述:Membranes, polymers, liquid crystals, glasses, colloids, granular matter
膜,聚合物,液晶,玻璃,胶体,颗粒物质
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Biology 数量生物学
二级分类:Biomolecules 生物分子
分类描述:DNA, RNA, proteins, lipids, etc.; molecular structures and folding kinetics; molecular interactions; single-molecule manipulation.
DNA、RNA、蛋白质、脂类等;分子结构与折叠动力学;分子相互作用;单分子操作。
--
---
英文摘要:
By exerting mechanical force it is possible to unfold/refold RNA molecules one at a time. In a small range of forces, an RNA molecule can hop between the folded and the unfolded state with force-dependent kinetic rates. Here, we introduce a mesoscopic model to analyze the hopping kinetics of RNA hairpins in an optical tweezers setup. The model includes different elements of the experimental setup (beads, handles and RNA sequence) and limitations of the instrument (time lag of the force-feedback mechanism and finite bandwidth of data acquisition). We investigated the influence of the instrument on the measured hopping rates. Results from the model are in good agreement with the experiments reported in the companion article (1). The comparison between theory and experiments allowed us to infer the values of the intrinsic molecular rates of the RNA hairpin alone and to search for the optimal experimental conditions to do the measurements. We conclude that long handles and soft laser traps represent the best conditions to extract rate estimates that are closest to the intrinsic molecular rates. The methodology and rationale presented here can be applied to other experimental setups and other molecules.
---
PDF链接:
https://arxiv.org/pdf/707.0662