摘要翻译:
本章提出了构造证据融合规则的新概念和框架。该框架基于一个裁判功能,它对由多个信息源提供的基本决策进行有条件的裁决仲裁。从这个框架导出了一种简单的抽样方法。这种抽样方法的目的是避免证据融合规则定义中固有的组合问题。通过抽样过程对融合规则的这种定义使得在裁判功能的算法实现的基础上构造若干规则成为可能,而不是数学公式。顺便说一句,它是定义规则的一种通用和直观的方法。该框架针对各种已知的证据规则进行了实现。在此框架的基础上,提出了新的证据组合规则,该规则考虑了对信息来源的一致评价。
---
英文标题:
《Definition of evidence fusion rules on the basis of Referee Functions》
---
作者:
Frederic Dambreville (DGA/Cta/DT/Gip)
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
This chapter defines a new concept and framework for constructing fusion rules for evidences. This framework is based on a referee function, which does a decisional arbitrament conditionally to basic decisions provided by the several sources of information. A simple sampling method is derived from this framework. The purpose of this sampling approach is to avoid the combinatorics which are inherent to the definition of fusion rules of evidences. This definition of the fusion rule by the means of a sampling process makes possible the construction of several rules on the basis of an algorithmic implementation of the referee function, instead of a mathematical formulation. Incidentally, it is a versatile and intuitive way for defining rules. The framework is implemented for various well known evidence rules. On the basis of this framework, new rules for combining evidences are proposed, which takes into account a consensual evaluation of the sources of information.
---
PDF链接:
https://arxiv.org/pdf/0903.1451