摘要翻译:
我们提出了一种标准遗传算法的变体,它结合了群体中个体之间的社会相互作用。我们的目标是了解社会系统的进化作用及其作为进化算法中非遗传新步骤的可能应用。在生物群体中,即动物,甚至人类和微生物,社会互动经常影响个体的适应。可以想象,通过社会相互作用对适应度的扰动是一种进化策略,以避免陷入局部最优,从而避免种群的快速收敛。我们根据博弈论对社会互动进行建模。因此,种群由合作者和叛逃者组成,根据众所周知的博弈模型(囚徒困境、小鸡博弈等),他们的相互作用产生收益。我们在背包问题上的结果表明,对于一些博弈模型,与标准遗传算法相比,性能有了显著的提高。
---
英文标题:
《Cheating for Problem Solving: A Genetic Algorithm with Social
Interactions》
---
作者:
Rafeal Lahoz-Beltra, Gabriela Ochoa, Uwe Aickelin
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Science and Game Theory 计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
---
英文摘要:
We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.
---
PDF链接:
https://arxiv.org/pdf/1001.1889