摘要翻译:
凸D多面体P的多项式表示是E^d上多项式的有限集{p_1(x),...,p_n(x)},使得P=setcond{x\in\E^d}{p_1(x)\ge0{对于每}1\leI\len}。我们用s(d,P)表示P的多项式表示中最小可能多项式个数。已知d\LE s(d,P)\LE 2d-1。此外,对于所有的凸d-多边形P,我们猜想s(d,P)=d。我们通过提供表示给定的简单d-多边形P的d多项式的显式构造来证实这个关于简单d-多边形的猜想。
---
英文标题:
《Representing simple d-dimensional polytopes by d polynomials》
---
作者:
Gennadiy Averkov, Martin Henk
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Metric Geometry 度量几何学
分类描述:Euclidean, hyperbolic, discrete, convex, coarse geometry, comparisons in Riemannian geometry, symmetric spaces
欧氏,双曲,离散,凸,粗几何,黎曼几何的比较,对称空间
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
A polynomial representation of a convex d-polytope P is a finite set \{p_1(x),...,p_n(x)\} of polynomials over E^d such that P=\setcond{x \in \E^d}{p_1(x) \ge 0 {for every} 1 \le i \le n}. By s(d,P) we denote the least possible number of polynomials in a polynomial representation of P. It is known that d \le s(d,P) \le 2d-1. Moreover, it is conjectured that s(d,P)=d for all convex d-polytopes P. We confirm this conjecture for simple d-polytopes by providing an explicit construction of d polynomials that represent a given simple d-polytope P.
---
PDF链接:
https://arxiv.org/pdf/0709.2099