摘要翻译:
设$i$是定义$k^n$自同构的多项式的导项之间关系的理想。本文证明了保$I$的局部幂零导子的存在性。此外,如果$I$是主体,即$I=(R)$,我们计算了由自同构定义的某个度函数$\deg2$的一个上界$\deg2(R)$。作为应用,我们确定了$k^3$自同构关系的所有主理想,并给出了关于$k^{2}$自同构驯化性的Jung-van der Kulk定理的两个初等证明。
---
英文标题:
《Relations between the leading terms of a polynomial automorphism》
---
作者:
Philippe Bonnet and St\'ephane V\'en\'ereau
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $I$ be the ideal of relations between the leading terms of the polynomials defining an automorphism of $K^n$. In this paper, we prove the existence of a locally nilpotent derivation which preserves $I$. Moreover, if $I$ is principal, i.e. $I=(R)$, we compute an upper bound for $\deg_2(R)$ for some degree function $\deg_2$ defined by the automorphism. As applications, we determine all the principal ideals of relations for automorphisms of $K^3$ and deduce two elementary proofs of the Jung-van der Kulk Theorem about the tameness of automorphisms of $K^{2}$.
---
PDF链接:
https://arxiv.org/pdf/0808.1821