摘要翻译:
本文的目的是揭示关于多项式理想的多项式范式与更几何的正交性概念之间的一种意想不到的关系。本文给出了域K上多元多项式环中多项式关于多项式理想I的正规形的一种新的计算方法,条件是域K是有限的,理想I是消失理想。为了使用正交性的概念,我们在有限域上的向量空间上引入了对称双线性形式。
---
英文标题:
《Canonical representatives for residue classes of a polynomial ideal and
orthogonality》
---
作者:
Edgar Delgado-Eckert
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The aim of this paper is to unveil an unexpected relationship between the normal form of a polynomial with respect to a polynomial ideal and the more geometric concept of orthogonality. We present a new way to calculate the normal form of a polynomial with respect to a polynomial ideal I in the ring of multivariate polynomials over a field K, provided the field K is finite and the ideal I is a vanishing ideal. In order to use the concept of orthogonality, we introduce a symmetric bilinear form on a vector space over a finite field.
---
PDF链接:
https://arxiv.org/pdf/0706.1952