摘要翻译:
我们研究了当$R$是UFD时,$R[X,y]$的四长多项式自同构的结构。利用本研究的结果,证明了如果$\text{SL}_m(R[X_1,X_2,...,X_n])=\text{E}_m(R[X_1,X_2,...,X_n])$对于所有$n,m\ge0$,则所有共轭的$r[X,y]$的四长多项式自同构是稳定驯化的。
---
英文标题:
《Length Four Polynomial Automorphisms》
---
作者:
Sooraj Kuttykrishnan
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We study the structure of length four polynomial automorphisms of $R[X,Y]$ when $R$ is a UFD. The results from this study are used to prove that if $\text{SL}_m(R[X_1,X_2,..., X_n]) = \text{E}_m(R[X_1,X_2,..., X_n])$ for all $n, m \ge 0$ then all length four polynomial automorphisms of $R[X,Y]$ that are conjugates are stably tame.
---
PDF链接:
https://arxiv.org/pdf/0808.4114