摘要翻译:
本文讨论了不可分解多项式及其谱的一些问题。光谱是如何通过还原或特化,或通过更一般的环态性来表现的?不可分解性质在一个域和它的代数闭包上是等价的吗?有限域上有多少个多项式是可分解的?
---
英文标题:
《Indecomposable polynomials and their spectrum》
---
作者:
Arnaud Bodin, Pierre D\`ebes, Salah Najib
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We address some questions concerning indecomposable polynomials and their spectrum. How does the spectrum behave via reduction or specialization, or via a more general ring morphism? Are the indecomposability properties equivalent over a field and over its algebraic closure? How many polynomials are decomposable over a finite field?
---
PDF链接:
https://arxiv.org/pdf/0811.4029