全部版块 我的主页
论坛 经济学人 二区 外文文献专区
419 0
2022-03-03
摘要翻译:
在特征为2的域K上,我们产生了一个新的多项式族f(x),它是例外的,即除了x-y的标量倍数外,在K[x,y]中f(x)-f(y)没有绝对不可约因子;当K是有限的时,这个条件等价于说有无穷多个有限扩张L/K,其映射C-->f(c)在L上是双射的。我们的多项式有次(2^e-1)*2^(e-1),其中e是奇数。结合文献ARXIV:0707.1835,完成了不可分解的非特征幂次例外多项式的分类。我们的证明策略是识别由例外多项式F诱导的分支覆盖P^1-->P^1的Galois闭包的曲线。在这种情况下,曲线是x^(q+1)+y^(q+1)=a+T(xy),其中T(z)=z^(q/2)+z^(q/4)+...+z。我们的证明依赖于曲线的Galois复盖中分支的新性质,以及某些2-参数族中所有曲线的自同构群的计算。
---
英文标题:
《A new family of exceptional polynomials in characteristic two》
---
作者:
Robert M. Guralnick, Joel E. Rosenberg and Michael E. Zieve
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We produce a new family of polynomials f(x) over fields K of characteristic 2 which are exceptional, in the sense that f(x)-f(y) has no absolutely irreducible factors in K[x,y] besides the scalar multiples of x-y; when K is finite, this condition is equivalent to saying there are infinitely many finite extensions L/K for which the map c --> f(c) is bijective on L. Our polynomials have degree (2^e-1)*2^(e-1), where e is odd. Combined with our previous paper arxiv:0707.1835, this completes the classification of indecomposable exceptional polynomials of degree not a power of the characteristic. The strategy of our proof is to identify the curves that can arise as the Galois closure of the branched cover P^1 --> P^1 induced by an exceptional polynomial f. In this case, the curves turn out to be x^(q+1)+y^(q+1)=a+T(xy), where T(z)=z^(q/2)+z^(q/4)+...+z. Our proofs rely on new properties of ramification in Galois covers of curves, as well as the computation of the automorphism groups of all curves in a certain 2-parameter family.
---
PDF链接:
https://arxiv.org/pdf/0707.1837
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群