摘要翻译:
更新版本。包括对2008年12月关于解决正特性奇点的京都研讨会在这一领域取得的进展的评论。本文综述了袋鼠点的理论,因为它们出现在解决正特征中的奇点。它们是将分辨率的特征零点证明转化为正特征的主要障碍之一。通过斜多项式的概念对袋鼠点进行了分类。本文的结果用于Hironaka最近关于正特征奇异性分解的程序中。
---
英文标题:
《Kangaroo points and oblique polynomials in resolution of positive
  characteristic》
---
作者:
Herwig Hauser (Univ. Vienna)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  Updated version. Includes comments on the advances in the field from the Kyoto workshop on Resolution of Singularities in Positive Characteristic, December 2008.   The article surveys the theory of kangaroo points as they appear in the resolution of singularities in positive characteristic. They represent one of the main obstructions for transcribing the characteristic zero proof of resolution to positive characteristic. Kangaroo points are classified through the concept of oblique polynomials. The results of the article are used in Hironaka's recent program towards the resolution of singularities in positive characteristic. 
---
PDF链接:
https://arxiv.org/pdf/0811.4151