摘要翻译:
Alexander-Hirschowitz定理说,在${\bf P}^n$中的$k$双点的一般集合对$d$次的齐次多项式施加独立的条件,并有一系列众所周知的例外。我们将这个定理推广到包含在一般对偶点并中的任意零维格式。我们在多项式插值设置中工作。在这个框架中,我们的主要结果表明,在给定任意个数的一阶偏导数的一般线性组合的情况下,$n$变量中的$led$次多项式的仿射空间在$dneq2$时具有期望维数,只有五种例外情况。如果$D=2$,则对例外情况进行了全面描述。
---
英文标题:
《On partial polynomial interpolation》
---
作者:
Maria Chiara Brambilla and Giorgio Ottaviani
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Numerical Analysis 数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
---
英文摘要:
The Alexander-Hirschowitz theorem says that a general collection of $k$ double points in ${\bf P}^n$ imposes independent conditions on homogeneous polynomials of degree $d$ with a well known list of exceptions. We generalize this theorem to arbitrary zero-dimensional schemes contained in a general union of double points. We work in the polynomial interpolation setting. In this framework our main result says that the affine space of polynomials of degree $\le d$ in $n$ variables, with assigned values of any number of general linear combinations of first partial derivatives, has the expected dimension if $d\neq 2$ with only five exceptional cases. If $d=2$ the exceptional cases are fully described.
---
PDF链接:
https://arxiv.org/pdf/0705.4448