摘要翻译:
本文研究了Frobenius流形上调和Higgs束与Saito结构之间的关系,从而得到了TT*几何。给出了证明方便非退化洛朗多项式泛展开的基空间上正则TT*结构存在性的主线。
---
英文标题:
《Universal unfoldings of Laurent polynomials and tt* structures》
---
作者:
Claude Sabbah
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
---
英文摘要:
This article surveys the relations between harmonic Higgs bundles and Saito structures which lead to tt* geometry on Frobenius manifolds. We give the main lines of the proof of the existence of a canonical tt* structure on the base space of the universal unfolding of convenient and nondegenerate Laurent polynomials.
---
PDF链接:
https://arxiv.org/pdf/0802.1259