摘要翻译:
众所周知,线性群${\rm GL}_n(\c)$的一个元素是半单的当且仅当它的共轭类是Zariski闭的。本文的目的是证明对于复平面多项式自同构群,同样的结果也成立。
---
英文标题:
《A Characterization of Semisimple Plane Polynomial Automorphisms》
---
作者:
Jean-Philippe Furter, Stefan Maubach
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Group Theory 群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
---
英文摘要:
It is well-known that an element of the linear group ${\rm GL}_n(\C)$ is semisimple if and only if its conjugacy class is Zariski closed. The aim of this paper is to show that the same result holds for the group of complex plane polynomial automorphisms.
---
PDF链接:
https://arxiv.org/pdf/0804.2157