摘要翻译:
证明了n×N-矩阵主次映射的映像是闭的。19世纪,南森和缪尔研究了当n=4时寻找主要未成年人之间所有关系的隐含化问题。我们通过构造12次的显式多项式来完成部分结果,这些多项式在理论上定义了这种仿射簇及其在$\pp^{15}$中的射影闭包。后者是2×2×2×2×2-超行列式奇异轨迹的主要成分。
---
英文标题:
《Polynomial relations among principal minors of a 4x4-matrix》
---
作者:
Shaowei Lin, Bernd Sturmfels
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Computer Science 计算机科学
二级分类:Symbolic Computation 符号计算
分类描述:Roughly includes material in ACM Subject Class I.1.
大致包括ACM学科第一类1的材料。
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
The image of the principal minor map for n x n-matrices is shown to be closed. In the 19th century, Nansen and Muir studied the implicitization problem of finding all relations among principal minors when n=4. We complete their partial results by constructing explicit polynomials of degree 12 that scheme-theoretically define this affine variety and also its projective closure in $\PP^{15}$. The latter is the main component in the singular locus of the 2 x 2 x 2 x 2-hyperdeterminant.
---
PDF链接:
https://arxiv.org/pdf/0812.0601