摘要翻译:
紧致复流形$x$的Fr“Olicher谱序列度量了Dolbeault上同调与de Rham上同调之间的差异,我们构造了具有左不变复结构$x_n$的2$nil流形,使得$n$微分$d_n$不消失,这代替了第二作者先前的错误例子。
---
英文标题:
《The Fr\"olicher spectral sequence can be arbitrarily non degenerate》
---
作者:
Laura Bigalke and S\"onke Rollenske
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
The Fr\"olicher spectral sequence of a compact complex manifold $X$ measures the difference between Dolbeault cohomology and de Rham cohomology. We construct for $n\geq 2$ nilmanifolds with left-invariant complex structure $X_n$ such that the $n$-th differential $d_n$ does not vanish. This replaces an earlier incorrect example by the second author.
---
PDF链接:
https://arxiv.org/pdf/0709.0481