全部版块 我的主页
论坛 经济学人 二区 外文文献专区
311 0
2022-03-06
摘要翻译:
尽管概念大相径庭,回声状态网络和压缩感知模型都依赖于随机权重的集合;作为回波状态网络的储层动力学,以及压缩感知中的感知系数。在压缩感知中,有几种生成随机矩阵和度量以指示期望性能的方法得到了很好的研究,但对回声状态网络的研究较少。这项工作探索了这些压缩感知方法和度量的任何重叠,以应用于回声状态网络。考虑了几种随机库权重的产生方法,并借鉴压缩感知的受限等距特性,提出了一种新的回声状态网络权重的产生方法。理论和实验结果表明,相同类型的随机矩阵适用于回声状态网络和压缩感知场景,当所提出的受限等距常数接近1时,回声状态网络的分类精度得到了提高。
---
英文标题:
《Randomness and isometries in echo state networks and compressed sensing》
---
作者:
Ashley Prater-Bennette
---
最新提交年份:
2018
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--

---
英文摘要:
  Although largely different concepts, echo state networks and compressed sensing models both rely on collections of random weights; as the reservoir dynamics for echo state networks, and the sensing coefficients in compressed sensing. Several methods for generating the random matrices and metrics to indicate desirable performance are well-studied in compressed sensing, but less so for echo state networks. This work explores any overlap in these compressed sensing methods and metrics for application to echo state networks. Several methods for generating the random reservoir weights are considered, and a new metric, inspired by the restricted isometry property for compressed sensing, is proposed for echo state networks. The methods and metrics are investigated theoretically and experimentally, with results suggesting that the same types of random matrices work well for both echo state network and compressed sensing scenarios, and that echo state network classification accuracy is improved when the proposed restricted isometry-like constants are close to 1.
---
PDF链接:
https://arxiv.org/pdf/1802.01381
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群