摘要翻译:
我们证明了Prym变体的几何特征是存在一对对称的Kummer变体的四次平面。我们还证明了Prym变体是由某些(新的)θ泛函方程刻画的。为此,我们构造并研究了Novikov-Veselov族的差分-微分模拟。
---
英文标题:
《Integrable discrete Schrodinger equations and a characterization of Prym
  varieties by a pair of quadrisecants》
---
作者:
Samuel Grushevsky, Igor Krichever
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Physics        物理学
二级分类:High Energy Physics - Theory        高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
---
英文摘要:
  We prove that Prym varieties are characterized geometrically by the existence of a symmetric pair of quadrisecant planes of the associated Kummer variety. We also show that Prym varieties are characterized by certain (new) theta-functional equations. For this purpose we construct and study a difference-differential analog of the Novikov-Veselov hierarchy. 
---
PDF链接:
https://arxiv.org/pdf/0705.2829