摘要翻译:
就音乐风格而言,单个音乐家、团体或作曲家的作品可以有很大的不同。事实上,不同的风格元素,从表现媒介和节奏到和声和质感,在艺术家的一生中都有典型的开发和发展。然而,在感性层面上,作曲家的作品往往有一种可识别的特征--一个有经验的听众往往能从音乐中提取微妙的线索来识别作曲家或演奏者。在这里,我们建议一个卷积网络可以学习这些微妙的线索或特征,给出一个适当的音乐表现。本文将深度卷积
神经网络应用于一个大型音频数据集,并对其在音频分类任务中的性能进行了实证评估。我们训练过的网络在这样的分类任务上显示了精确的性能,当给出通过原始音频波形的简单变换获得的5 s音乐示例时。一个特别有趣的例子是通过应用对数间隔滤波器组获得的音乐光谱表示,反映了哺乳动物听觉信号转导的早期阶段。通过随机矩阵变换(RMT)获得了最成功的音乐表达。基于对数滤波器组和RMT的网络能够分别在68%和84%的情况下正确猜测31种可能性中的一个作曲家。
---
英文标题:
《Representations of Sound in Deep Learning of Audio Features from Music》
---
作者:
Sergey Shuvaev, Hamza Giaffar, and Alexei A. Koulakov
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Neurons and Cognition 神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
---
英文摘要:
The work of a single musician, group or composer can vary widely in terms of musical style. Indeed, different stylistic elements, from performance medium and rhythm to harmony and texture, are typically exploited and developed across an artist's lifetime. Yet, there is often a discernable character to the work of, for instance, individual composers at the perceptual level - an experienced listener can often pick up on subtle clues in the music to identify the composer or performer. Here we suggest that a convolutional network may learn these subtle clues or features given an appropriate representation of the music. In this paper, we apply a deep convolutional neural network to a large audio dataset and empirically evaluate its performance on audio classification tasks. Our trained network demonstrates accurate performance on such classification tasks when presented with 5 s examples of music obtained by simple transformations of the raw audio waveform. A particularly interesting example is the spectral representation of music obtained by application of a logarithmically spaced filter bank, mirroring the early stages of auditory signal transduction in mammals. The most successful representation of music to facilitate discrimination was obtained via a random matrix transform (RMT). Networks based on logarithmic filter banks and RMT were able to correctly guess the one composer out of 31 possibilities in 68 and 84 percent of cases respectively.
---
PDF链接:
https://arxiv.org/pdf/1712.02898