全部版块 我的主页
论坛 经济学人 二区 外文文献专区
321 0
2022-03-06
摘要翻译:
设G是特征p>0的代数闭域上的一个约化线性代数群。如果G的一个子群的全局和无穷小中心化子维数相同,则称它在G中是可分的。研究了可分性概念与Serre关于G的子群的G-完全可约性概念之间的相互作用。可分性假设出现在许多关于G-完全可约性的一般定理中。我们证明,如果没有这个假设,这些结果中的许多都是失败的。另一方面,我们证明了如果G是连通还原群,p对G是很好的,那么G的任何子群都是可分的;在这些假设下,如果G的李代数是半单的H-模,则G的子群H是G-完全可约的。最近,Guralnick证明了如果H是G的一个还原子群,C是G的一个共轭类,则C与H的交是H-共轭类的有限并。对于泛型p--当某些额外的假设成立时,包括可分性--这是从Richardson的一个众所周知的切空间论证中得出的,但一般而言,它基于Lusztig的深刻结果,即连通还原群只有有限多个单幂共轭类。我们证明了当考虑n元组的共轭类时,Guralnick的类似结果是假的。
---
英文标题:
《Complete Reducibility and Separability》
---
作者:
Michael Bate, Benjamin Martin, Gerhard Roehrle, and Rudolf Tange
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Group Theory        群论
分类描述:Finite groups, topological groups, representation theory, cohomology, classification and structure
有限群、拓扑群、表示论、上同调、分类与结构
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let G be a reductive linear algebraic group over an algebraically closed field of characteristic p > 0. A subgroup of G is said to be separable in G if its global and infinitesimal centralizers have the same dimension. We study the interaction between the notion of separability and Serre's concept of G-complete reducibility for subgroups of G. The separability hypothesis appears in many general theorems concerning G-complete reducibility. We demonstrate that many of these results fail without this hypothesis. On the other hand, we prove that if G is a connected reductive group and p is very good for G, then any subgroup of G is separable; we deduce that under these hypotheses on G, a subgroup H of G is G-completely reducible provided the Lie algebra of G is semisimple as an H-module.   Recently, Guralnick has proved that if H is a reductive subgroup of G and C is a conjugacy class of G, then the intersection of C and H is a finite union of H-conjugacy classes. For generic p -- when certain extra hypotheses hold, including separability -- this follows from a well-known tangent space argument due to Richardson, but in general, it rests on Lusztig's deep result that a connected reductive group has only finitely many unipotent conjugacy classes. We show that the analogue of Guralnick's result is false if one considers conjugacy classes of n-tuples of elements from H for n > 1.
---
PDF链接:
https://arxiv.org/pdf/0709.3803
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群