摘要翻译:
本文介绍了片上时间光计算的概念,它基于色散傅里叶变换和适当设计的调制模块,在时域内进行微分、积分或卷积等数学运算。当信号通过完全可重构的片上光子信号处理器传播时,执行所需的数学运算。尽管近年来出现了一些光子时间信号处理器,但它们通常体积庞大或可重构性有限,这对于实现大规模通用光子信号处理器具有重要意义。为了解决这些问题,本文提出了一种完全可重构的光子集成信号处理系统。重点是利用色散傅里叶变换、四波混频线性啁啾调制以及通过级联马赫-曾德尔调制器和相位调制器施加所需的任意传递函数来实现可重构性。我们的演示显示,操作时间为$200~ps$,高分辨率为$300~fs$。为了实现片上光子信号处理器,采用了具有2.81乘{10^{6}}frac{{{ps^2}}}{km}$的超宽带群速度色散的光子晶体波导。数值模拟表明,该结构在400~GHz$带宽范围内具有芯片级完全可重构的全光信号处理的巨大潜力。
---
英文标题:
《Temporal Analog Optical Computing using an On-Chip Fully Reconfigurable
Photonic Signal Processor》
---
作者:
Hossein Babashah, Zahra Kavehvash, Amin Khavasi, Somayyeh Koohi
---
最新提交年份:
2017
---
分类信息:
一级分类:Physics 物理学
二级分类:Optics 光学
分类描述:Adaptive optics. Astronomical optics. Atmospheric optics. Biomedical optics. Cardinal points. Collimation. Doppler effect. Fiber optics. Fourier optics. Geometrical optics (Gradient index optics. Holography. Infrared optics. Integrated optics. Laser applications. Laser optical systems. Lasers. Light amplification. Light diffraction. Luminescence. Microoptics. Nano optics. Ocean optics. Optical computing. Optical devices. Optical imaging. Optical materials. Optical metrology. Optical microscopy. Optical properties. Optical signal processing. Optical testing techniques. Optical wave propagation. Paraxial optics. Photoabsorption. Photoexcitations. Physical optics. Physiological optics. Quantum optics. Segmented optics. Spectra. Statistical optics. Surface optics. Ultrafast optics. Wave optics. X-ray optics.
自适应光学。天文光学。大气光学。生物医学光学。基本点。准直。多普勒效应。纤维光学。傅里叶光学。几何光学(梯度折射率光学、全息术、红外光学、集成光学、激光应用、激光光学系统、激光、光放大、光衍射、发光、微光学、纳米光学、海洋光学、光学计算、光学器件、光学成像、光学材料、光学计量学、光学显微镜、光学特性、光学信号处理、光学测试技术、光波传播、傍轴光学、光吸收、光激发、物理光学、生理光学、量子光学、分段光学、光谱、统计光学、表面光学、超快光学、波动光学、X射线光学。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper introduces the concept of on-chip temporal optical computing, based on dispersive Fourier transform and suitably designed modulation module, to perform mathematical operations of interest, such as differentiation, integration, or convolution in time domain. The desired mathematical operation is performed as signal propagates through a fully reconfigurable on-chip photonic signal processor. Although a few number of photonic temporal signal processors have been introduced recently, they are usually bulky or they suffer from limited reconfigurability which is of great importance to implement large-scale general-purpose photonic signal processors. To address these limitations, this paper demonstrates a fully reconfigurable photonic integrated signal processing system. As the key point, the reconfigurability is achieved by taking advantages of dispersive Fourier transformation, linearly chirp modulation using four wave mixing, and applying the desired arbitrary transfer function through a cascaded Mach-Zehnder modulator and phase modulator. Our demonstration reveals an operation time of $200~ps$ with high resolution of $300~fs$. To have an on-chip photonic signal processor, a broadband photonic crystal waveguide with an extremely large group-velocity dispersion of $2.81 \times {10^{6}}~\frac{{{ps^2}}}{km}$ is utilized. Numerical simulations of the proposed structure reveal a great potential for chip-scale fully reconfigurable all-optical signal processing through a bandwidth of $400~GHz$.
---
PDF链接:
https://arxiv.org/pdf/1712.06482