全部版块 我的主页
论坛 经济学人 二区 外文文献专区
289 0
2022-03-07
摘要翻译:
为了研究流动性不足对价格波动的影响,我们引入了一个微观的定单动态模型。我们使用存储订单的平均密度(粒度$G$)作为流动性的代理。这导致价格影响面取决于成交量$\omega$和$g$。对价格影响面的体积(在粒度上的平均值)的依赖关系是一个凹幂律函数$<\phi(\omega,g)>_g\sim\omega^\delta$,其$\delta约为0.59$。相反,对粒度的依赖关系是$\phi(\omega,g\omega)\sim g^\alpha$与$\alpha\约为-1$,显示了价格波动在$g\到0$的极限范围内的差异。此外,即使在流动性有限的中间情况下,这种影响也可能非常大,它是理解价格大幅波动起源的自然候选因素。
---
英文标题:
《Liquidity Crisis, Granularity of the Order Book and Price Fluctuations》
---
作者:
M. Cristelli, V. Alfi, L. Pietronero, A. Zaccaria
---
最新提交年份:
2009
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Trading and Market Microstructure        交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--

---
英文摘要:
  We introduce a microscopic model for the dynamics of the order book to study how the lack of liquidity influences price fluctuations. We use the average density of the stored orders (granularity $g$) as a proxy for liquidity. This leads to a Price Impact Surface which depends on both volume $\omega$ and $g$. The dependence on the volume (averaged over the granularity) of the Price Impact Surface is found to be a concave power law function $<\phi(\omega,g)>_g\sim\omega^\delta$ with $\delta\approx 0.59$. Instead the dependence on the granularity is $\phi(\omega,g|\omega)\sim g^\alpha$ with $\alpha\approx-1$, showing a divergence of price fluctuations in the limit $g\to 0$. Moreover, even in intermediate situations of finite liquidity, this effect can be very large and it is a natural candidate for understanding the origin of large price fluctuations.
---
PDF链接:
https://arxiv.org/pdf/0902.4159
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群