摘要翻译:
金刚石纳米晶中的色心是一种新型的荧光标记物,由于其无与伦比的亮度、光稳定性和生物化学惰性而引起人们的极大兴趣。含缺陷的荧光金刚石纳米晶可作为替代常规有机染料分子、量子点或自荧光蛋白的标记物。它们可用于单个标记的跟踪和超高分辨率定位。此外,金刚石缺陷的自旋特性可用于纳米级的磁光成像(MOI)。我们发展这一技术来揭示单个生物纳米运动FoF1-ATP合酶的旋转运动和弹性储能机制的细节。FoF1-ATP合酶是为活细胞提供“化学能货币”三磷酸腺苷的酶。ATP的形成是通过酶内亚基的逐步内旋转完成的。此前,亚基旋转一直是通过单分子荧光共振能量转移(FRET)来监测的,但受到荧光团光稳定性的限制。荧光纳米钻石将这些FRET测量推进到长时间尺度。
---
英文标题:
《Fluorescent nanodiamonds for FRET-based monitoring of a single
biological nanomotor FoF1-ATP synthase》
---
作者:
M. Boersch, R. Reuter, G. Balasubramanian, R. Erdmann, F. Jelezko, J.
Wrachtrup
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Biomolecules 生物分子
分类描述:DNA, RNA, proteins, lipids, etc.; molecular structures and folding kinetics; molecular interactions; single-molecule manipulation.
DNA、RNA、蛋白质、脂类等;分子结构与折叠动力学;分子相互作用;单分子操作。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Color centers in diamond nanocrystals are a new class of fluorescence markers that attract significant interest due to matchless brightness, photostability and biochemical inertness. Fluorescing diamond nanocrystals containing defects can be used as markers replacing conventional organic dye molecules, quantum dots or autofluorescent proteins. They can be applied for tracking and ultrahigh-resolution localization of the single markers. In addition the spin properties of diamond defects can be utilized for novel magneto-optical imaging (MOI) with nanometer resolution. We develop this technique to unravel the details of the rotary motions and the elastic energy storage mechanism of a single biological nanomotor FoF1-ATP synthase. FoF1-ATP synthase is the enzyme that provides the 'chemical energy currency' adenosine triphosphate, ATP, for living cells. The formation of ATP is accomplished by a stepwise internal rotation of subunits within the enzyme. Previously subunit rotation has been monitored by single-molecule fluorescence resonance energy transfer (FRET) and was limited by the photostability of the fluorophores. Fluorescent nanodiamonds advance these FRET measurements to long time scales.
---
PDF链接:
https://arxiv.org/pdf/0902.0389