摘要翻译:
我们考虑CEV过程下的美式看跌期权。这对应于偏微分方程的自由边界问题。我们证明了这一自由边界满足非线性积分方程,并在小的$Rho$=$2R/\sigma^2$范围内进行了分析,其中$R$是利率,$\sigma$是波动率。我们用摄动方法发现自由边界在五个时间范围内表现不同。
---
英文标题:
《On a free boundary problem for an American put option under the CEV
process》
---
作者:
Miao Xu, Charles Knessl
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Analysis of PDEs 偏微分方程分析
分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE's, conservation laws, qualitative dynamics
存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
We consider an American put option under the CEV process. This corresponds to a free boundary problem for a PDE. We show that this free bondary satisfies a nonlinear integral equation, and analyze it in the limit of small $\rho$ = $2r/ \sigma^2$, where $r$ is the interest rate and $\sigma$ is the volatility. We use perturbation methods to find that the free boundary behaves differently for five ranges of time to expiry.
---
PDF链接:
https://arxiv.org/pdf/1009.2973