摘要翻译:
提出了一种新的股票主动交易算法。虽然传统的专家建议和“通用”算法(以及标准的技术交易启发式)试图预测赢家或趋势,但我们的方法依赖于市场上所有对股票之间的可预测统计关系。我们对历史市场的实证结果提供了强有力的证据,证明这种技术交易可以“跑赢市场”,而且可以跑赢市场中最好的股票。在这样做时,我们利用了一种新的思想,在专家学习的背景下平滑关键参数。
---
英文标题:
《Can We Learn to Beat the Best Stock》
---
作者:
A. Borodin, R. El-Yaniv, V. Gogan
---
最新提交年份:
2011
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
---
英文摘要:
A novel algorithm for actively trading stocks is presented. While traditional expert advice and "universal" algorithms (as well as standard technical trading heuristics) attempt to predict winners or trends, our approach relies on predictable statistical relations between all pairs of stocks in the market. Our empirical results on historical markets provide strong evidence that this type of technical trading can "beat the market" and moreover, can beat the best stock in the market. In doing so we utilize a new idea for smoothing critical parameters in the context of expert learning.
---
PDF链接:
https://arxiv.org/pdf/1107.0036