摘要翻译:
本文发展了一类新的金融市场模型。这些模型是基于广义电报过程:具有交替速度的马尔可夫随机流和在速度切换时发生的跳跃。虽然这类市场可能会有套利机会,但如果股票价格的跳跃方向与其速度和利率行为有一定的对应关系,则所考虑的模型是无套利和完全的。推导了Black-Scholes基本微分方程的一个模拟,但与Black-Scholes模型相反,该方程是双曲型的。利用完全套期保值和分位数套期保值,得到了欧式期权价格的显式公式。
---
英文标题:
《On Financial Markets Based on Telegraph Processes》
---
作者:
Nikita Ratanov, Alexander Melnikov
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
The paper develops a new class of financial market models. These models are based on generalized telegraph processes: Markov random flows with alternating velocities and jumps occurring when the velocities are switching. While such markets may admit an arbitrage opportunity, the model under consideration is arbitrage-free and complete if directions of jumps in stock prices are in a certain correspondence with their velocity and interest rate behaviour. An analog of the Black-Scholes fundamental differential equation is derived, but, in contrast with the Black-Scholes model, this equation is hyperbolic. Explicit formulas for prices of European options are obtained using perfect and quantile hedging.
---
PDF链接:
https://arxiv.org/pdf/0712.3428