摘要翻译:
在数学金融学中,在某些Levy模型下,期权定价的一种流行方法是考虑标的物遵循泊松跳扩散过程。众所周知,这导致了部分积分微分方程(PIDE),它通常不允许解析解,而数值解带来了一些问题。本文阐述了如何将PIDE转化为一类所谓的伪抛物方程的新方法,这类方程在数学中是已知的,但在数学金融学中是相对较新的。作为一个例子,我们讨论了Levy测度允许这种变换的几个跳扩散模型。
---
英文标题:
《Using pseudo-parabolic and fractional equations for option pricing in
jump diffusion models》
---
作者:
Andrey Itkin, Peter Carr
---
最新提交年份:
2010
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
In mathematical finance a popular approach for pricing options under some Levy model is to consider underlying that follows a Poisson jump diffusion process. As it is well known this results in a partial integro-differential equation (PIDE) that usually does not allow an analytical solution while numerical solution brings some problems. In this paper we elaborate a new approach on how to transform the PIDE to some class of so-called pseudo-parabolic equations which are known in mathematics but are relatively new for mathematical finance. As an example we discuss several jump-diffusion models which Levy measure allows such a transformation.
---
PDF链接:
https://arxiv.org/pdf/1002.1995