摘要翻译:
利用M_{0,n}上的一系列r次根构造,给出了循环群的分类栈B\mu_r的稳定映射模空间的构造。本文证明了[C^n/\mu_r]型栈的零亏格Gromov-Witten理论的Hodge丛的Mu_r-本征空间的全Chern类的一个闭式,从而证明了[C^n/\mu_r]型栈的阻塞丛的全Chern类的闭式。对于所有零亏格Gromov-Witten不变量,我们导出了线性递推。
---
英文标题:
《Quantum cohomology of [C^N/\mu_r]》
---
作者:
Arend Bayer, Charles Cadman
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give a construction of the moduli space of stable maps to the classifying stack B\mu_r of a cyclic group by a sequence of r-th root constructions on M_{0, n}. We prove a closed formula for the total Chern class of \mu_r-eigenspaces of the Hodge bundle, and thus of the obstruction bundle of the genus zero Gromov-Witten theory of stacks of the form [C^N/\mu_r]. We deduce linear recursions for all genus-zero Gromov-Witten invariants.
---
PDF链接:
https://arxiv.org/pdf/0705.2160