摘要翻译:
我们将由Barbieri-Viale,Rosenschon和Saito引入的具有torsion的1-动机范畴的构造和由Barbieri-Viale和Kahn定义的1-动机sheaves范畴的构造推广到完美域$K$(不具有逆指数特性)。对于素域上的$K$超越,我们推广了Barbieri-Viale和Kahn的一个结果,证明${}^TM$和${\RM Shv}_1$具有等价的有界导出范畴。
---
英文标题:
《Remarks on 1-motivic sheaves》
---
作者:
Alessandra Bertapelle
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We generalize the construction of the category of 1-motives with torsion ${}^tM_1$ (introduced by Barbieri-Viale, Rosenschon and Saito) as well as the construction of the category of 1-motivic sheaves ${\rm Shv}_1$ (defined by Barbieri-Viale and Kahn) to perfect fields $k$ (without inverting the exponential characteristic). For $k$ transcendental over the prime field we extend a result of Barbieri-Viale and Kahn, showing that ${}^tM$ and ${\rm Shv}_1$ have equivalent bounded derived categories.
---
PDF链接:
https://arxiv.org/pdf/0801.3153