摘要翻译:
利用导出的等变相干束范畴,我们构造了一个结同调理论,它对量子sl(m)结多项式进行了分类。我们的结同调自然满足范畴化的MOY关系,并且猜想同构于Khovanov-Rozansky同调。我们的构造是由几何Satake对应所激发的,并与Manolescu的构造通过同调镜像对称而联系起来。
---
英文标题:
《Knot homology via derived categories of coherent sheaves II, sl(m) case》
---
作者:
Sabin Cautis, Joel Kamnitzer
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
---
英文摘要:
Using derived categories of equivariant coherent sheaves we construct a knot homology theory which categorifies the quantum sl(m) knot polynomial. Our knot homology naturally satisfies the categorified MOY relations and is conjecturally isomorphic to Khovanov-Rozansky homology. Our construction is motivated by the geometric Satake correspondence and is related to Manolescu's by homological mirror symmetry.
---
PDF链接:
https://arxiv.org/pdf/0710.3216