摘要翻译:
我们提出并研究了一个加压半柔性聚合物环的平衡统计力学模型。哈密顿量有一个与环的代数面积耦合的项和一个解释弯曲(半光滑性)的项。该模型允许自交集。结合Monte Carlo模拟、Flory型标度理论、平均场近似和晶格计数技术,我们得到了一个由连续跃迁将坍缩相和膨胀相分离的相图。导出了平均面积随环的单位数变化的标度性质。对于较大的压力,计算了该模型的离散和格子版本的面积的渐近行为。对于小压力,面积是通过映射到电子在磁场中运动的量子力学问题得到的。模拟结果与解析结果和平均场结果吻合较好。
---
英文标题:
《Phase Transitions in Pressurised Semiflexible Polymer Rings》
---
作者:
Mithun K. Mitra, Gautam I. Menon, R. Rajesh
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We propose and study a model for the equilibrium statistical mechanics of a pressurised semiflexible polymer ring. The Hamiltonian has a term which couples to the algebraic area of the ring and a term which accounts for bending (semiflexibility). The model allows for self-intersections. Using a combination of Monte Carlo simulations, Flory-type scaling theory, mean-field approximations and lattice enumeration techniques, we obtain a phase diagram in which collapsed and inflated phases are separated by a continuous transition. The scaling properties of the averaged area as a function of the number of units of the ring are derived. For large pressures, the asymptotic behaviour of the area is calculated for both discrete and lattice versions of the model. For small pressures, the area is obtained through a mapping onto the quantum mechanical problem of an electron moving in a magnetic field. The simulation data agree well with the analytic and mean-field results.
---
PDF链接:
https://arxiv.org/pdf/708.3318