全部版块 我的主页
论坛 经济学人 二区 外文文献专区
289 0
2022-03-07
摘要翻译:
我们解析地计算了连续时间布朗运动(有漂移和无漂移)在第一次通过原点之前达到最大值的时间$t_m$的概率密度$P(t_m)$。我们还计算了最大值$M$和$t_m$的联合概率密度$p(M,t_m)$。在无漂移情况下,我们发现$P(t_m)$具有幂律尾:$P(t_m)\sim t_m^{-3/2}$对于大$t_m$和$P(t_m)\sim t_m^{-1/2}$对于小$t_m$。当存在向原点的漂移时,对于大的$t_m$,$P(t_m)$呈指数衰减。数值模拟的结果与我们的解析预测非常一致。
---
英文标题:
《Distribution of the time at which the deviation of a Brownian motion is
  maximum before its first-passage time》
---
作者:
Julien Randon-Furling (LPTMS), Satya N. Majumdar (LPTMS)
---
最新提交年份:
2008
---
分类信息:

一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
英文摘要:
  We calculate analytically the probability density $P(t_m)$ of the time $t_m$ at which a continuous-time Brownian motion (with and without drift) attains its maximum before passing through the origin for the first time. We also compute the joint probability density $P(M,t_m)$ of the maximum $M$ and $t_m$. In the driftless case, we find that $P(t_m)$ has power-law tails: $P(t_m)\sim t_m^{-3/2}$ for large $t_m$ and $P(t_m)\sim t_m^{-1/2}$ for small $t_m$. In presence of a drift towards the origin, $P(t_m)$ decays exponentially for large $t_m$. The results from numerical simulations are in excellent agreement with our analytical predictions.
---
PDF链接:
https://arxiv.org/pdf/708.2101
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群