摘要翻译:
在方差未知的情况下,我们提出了一个处理高斯回归问题的程序。我们根据受Leung和Barron(2007)启发的过程,混合了各种模型的最小二乘估计量。我们证明了在某些情况下得到的估计量是一个简单的收缩估计量。然后我们将此过程应用于各种统计设置,如线性回归或Besov空间中的自适应估计。我们的结果为估计量的欧几里得风险提供了非渐近风险界。
---
英文标题:
《Mixing Least-Squares Estimators when the Variance is Unknown》
---
作者:
Christophe Giraud (JAD)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We propose a procedure to handle the problem of Gaussian regression when the variance is unknown. We mix least-squares estimators from various models according to a procedure inspired by that of Leung and Barron (2007). We show that in some cases the resulting estimator is a simple shrinkage estimator. We then apply this procedure in various statistical settings such as linear regression or adaptive estimation in Besov spaces. Our results provide non-asymptotic risk bounds for the Euclidean risk of the estimator.
---
PDF链接:
https://arxiv.org/pdf/711.0372